Dynamics of synthetic genetic networks

Ekkehard Ullner, J. García-Ojalvo, A. Koseska, E. Volkov, A. Zaikin

Universitat Politècnica de Catalunya
ekkehard.ullner@upc.edu
Content

• Introduction
 - control of protein synthesis
 - synthetic genetic networks

• The modified repressilator with repressive cell-to-cell communication
 - model
 - dynamic regimes
 - bifurcation analysis
 - system size effect

• Conclusion
Introduction

How do varieties arise?

The control of the protein

The protein structure is encoded in the genes.

The central dogma of biology: DNA \rightarrow RNA \rightarrow protein

The gene regulation

promoter: contact region of the DNA for the RNA polymerase

transcription factor proteins: affect directly or indirectly the

rate of transcription

Difficulties for the modeling

- natural genetic networks are huge
- structure not completely resolved
- interaction dynamics often unknown

→ reduce complexity
→ synthetic genetic networks

Synthetic genetic networks

- artificial genetic modules
- consist of a limited number of genes
- designed to operate isolated from the rest of the cellular machinery
- test system for special functions of natural gene networks
- greatly reduced complexity of natural networks
The toggle switch

- two repressors and two constitutive promoters
- mutual inhibition
- basic module of bistability - memory

The repressilator

- a network of three transcriptional repressors that inhibit one another in a cyclic way
- synthetic genetic clock
The repressilator

• a network of three transcriptional repressors that inhibit one another in a cyclic way
• synthetic genetic clock

The repressilator with quorum sensing

Objectives

- oscillation death as a mechanism of cell differentiation
- repressive coupling between the cells
- separate time scales in the dynamics
- more nonlinear behaviour

Suggested modifications

- put the auto inducer under control of protein TetR
- consider different mRNA / protein ratio β for each pair
- increase the Hill coefficient n to recent experimental values

The modified repressilator with quorum sensing

The modified repressilator

\[
\begin{align*}
\dot{a}_i &= -a_i + \frac{\alpha}{1 + C_i^n} \\
\dot{b}_i &= -b_i + \frac{\alpha}{1 + A_i^n} \\
\dot{c}_i &= -c_i + \frac{\alpha}{1 + B_i^n} + \kappa \frac{S_i}{1 + S_i} \\
\dot{A}_i &= \beta_a (a_i - A_i) \\
\dot{B}_i &= \beta_b (b_i - B_i) \\
\dot{C}_i &= \beta_c (c_i - C_i) \\
\dot{S}_i &= -k_{s0} S_i + k_{s1} B_i - \eta (S_i - Q \bar{S})
\end{align*}
\]
The coupling Q as the bifurcation parameter

$$Q = \frac{\sigma AN/V_{ext}}{k_{se} + \sigma AN/V_{ext}}$$

- Q is proportional to the cell density
- external cell volume controllable in chemostat experiment by fixed cell number
- Q varies in the range $[0, 1]$

The effect of the modifications

slow-fast dynamics due to the modification

intracellular repression
Repressive ↔ reinforcing coupling

Reinforcing

Repressive
The stable dynamic regimes

oscillatory

inhomogen limit cycle

clustering

single fixed point
Multistability by varying cell density

- Clustering
- Inhomogeneous limit cycle
- Oscillatory
- Single fixed point
The bifurcation analysis in the minimal system of two cells oscillation death and single fixed point
Inhomogeneous limit cycle and oscillation death
The anti-phase oscillations
The comparison

![Graph showing the comparison of different regimes.

The x-axis represents the parameter Q, ranging from 0 to 0.7.

The y-axis on the left represents the number of regimes, ranging from 10 to 1000.

The y-axis on the right represents the parameter a_1, ranging from 1 to 1000.

The graph shows different regimes:
- Oscillatory regimes are represented by a green region.
- Single fixed point regimes are represented by a blue region.

The regions are labeled IHLC and IHSS.

The graph illustrates the transition between different regimes as Q varies.
The system size effect

The artificial differentiation (IHLC, IHSS) becomes more likely in large ensembles.

The system size influences the position of IHLC and IHSS.
Conclusion

- Synthetic genetic networks are perfect test systems
- The repressive cell-to-cell communication enables very rich dynamics including multistability and clustering
- The oscillation death could be a mechanism of artificial cell differentiation
- Design of artificial genetic chips with desired functions
Acknowledgements

Prof. Jordi García-Ojalvo
Universitat Politècnica de Catalunya, Terrassa, Spain

Prof. Evgenii Volkov
Dep. Theoretical Physics, Lebedev Physical Inst., Moscow, Russia

Dr. Alexei Zaikin
Department of Mathematics, University of Essex, Colchester, U.K.

Dr. Aneta Koseska
Institute of Physics, University of Potsdam, Germany

financial support by the Alexander von Humboldt Foundation
Acknowledgements

Prof. Jordi García-Ojalvo
Prof. Evgenii Volkov
Dr. Aneta Koseska
Dr. Alexei Zaikin
Alexander von Humboldt Foundation

Moltes gràcies
per la vostra atenció!

Thank you for your attention and interest